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Long range hops and the pair annihilation reactionA+A—0:
Renormalization group and simulation
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A simple example of a nonequilibrium system for which fluctuations are important is a system of particles
which diffuse and may annihilate in pairs on contact. The renormalization group can be used to calculate the
time dependence of the density of particles, and provides both an exact value for the exponent governing the
decay of particles and anexpansion for the amplitude of this power law. When the diffusion is anomalous,
as when the particles perform weflights, the critical dimension depends continuously on the control param-
eter for the Ley distribution. Thee expansion can then become an expansion in a small parameter. We present
the renormalization group calculation and compare these results with those of a simulation.
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Many different approaches have been used to study thkere. However, the expansion does provide a systematic
dynamics of systems far from equilibriupi—3]. These in-  picture of the scaling behavior of this process.
clude exact solutions derived by mapping the problem to a This paper extends the renormalization group calculation
quantum spin systeff@t] or by studying various particle dis- of Ref.[9] to the case of anomalous diffusion, which is mod-
tribution functiong5,1], renormalization group methodié], eled by a long range hopping process in which the distance a
and simulations. Many of these systems can be assigned toparticle travels in each time step is chosen from syl éis-
small number of universality classes, based on the time deribution. These distributions form a family that share with
pendence of a few measurable quantities. Renormalizatiothe Gaussian the property that they are “stable,” in the sense
group methods are particularly useful in characterizing thighat the probability distribution of the sum of two numbers
universal behavior, as they make it possible to examine thehosen from a [ey distribution is the same distribution, up
action describing the behavior of the system and determinto a trivial rescaling. The probability distribution for each of
which scaling variables are relevant. Systems of particleshese distributions has a Fourier transform
which can diffuse and undergo reactions are straightforward
examples, which can be studied far from equilibrium. One of P(k)=e P (0<o=2), 2
the simplest examples of a reaction-diffusion system is the ] o
pair-annihilation reaction, in which members of a single speWhereo is a parameter that controls the shape of the distri-
cies of particle, denoted by, react at some rate to form an ~ bution andD scales the distribution. Far<2, tdhe real-
inert product. This reaction is writteA+A—0. This reac- SPace distributions have power—law_ta|lFS(r)~r*( ) for _
tion and some related ones have been studied for some tim@rger. These distributions appear in a number of physical
For some examples, see the work of Smoluchowgkiwho contextg[ll], mclu.dmg _dlfoSlon in dlsordered med[q.Z]
studied the coagulation of colloidal particles using a mean@nd motion of particles in turbulent flow, in both experiments
field approach, and Ovchinnikov and Zeldovi@], who ex- [13,14 and theo_ret|cal (_:alculatlon515]. Hmnchsen_ and
amined the effects of fluctuations on the reactiasB Howard[16] previously simulated the process studied here

—0. The solution to thémean-field rate equation and determined the exponemf but did not perform a renor-
malization group calculation and did not measure the ampli-
tude.

an ) ) The calculation of the density of particles uses reasonably
—=DV°n—A\n (1)

standard renormalization group techniques, and will only be
summarized here. The density of particles can be found by
solving the Langevin equation

for the density of particles is the correct result for spatial

at

dimensiond>2, but for lower dimensions fluctuations be- db(xt) ) ” 2

come important. If the number density of particles scales as at =(DNVEA DAV $(xD =N $7x 1)
n~At™“ for larget, thena=1 for d>2. A renormalization

group study by Le¢9] produced the exact result=d/2 for (X DX 3

d<2, and also yielded the amplitudeas an expansion in
e=2—d. The agreement between this amplitude and the e
act result[10] for a specific model ind=1 was poor, as
might be expected, as the expansion parametet is large

with an initial condition set by the initial density of particles
Xno. The anomalous diffusion ter,V7 is defined by its
action in Fourier space,

DAVUeik~X:_DA|k|a'eik~X’ (4)

*Email address: dvernon@sfu.ca and the noise ternj has correlations of the form
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A A A This sum can be done to all orders after a Laplace trans-
formation\x(k,s) = [5dte S]\ g(k,t) to give
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FIG. 1. The diagrams contributing to the renormalized annihila- 7 (4) F(—
tion rate. Time flows from right to left. 2
(LD (X 1)y = =20 8%(x—x") 8(t—1"). (55 and so, after a renormalization poist«” is chosen, the

exact flow function for the renormalized annihilation rate
The average density is then given by an average of solutiongg= x~ “Ag(0, «) is
to Eq.(3) over noise histories)=(¢). The normal diffusion

term D V? appears if the distribution of hops has any com- _ @_ _ €| 2

ponent proportional t&? in its Fourier transform. This term By = €9rT 6CF( 0') IR (10

will be dropped, as it is less relevant than the anomalous

term and flows to zero under renormalization. This has a nontrivial fixed point, which is stable b o, at
The form of the noise term and the noise-noise correlatio® =[CI'(e/a)] ™.

function given by Eq(5) are not determined by equilibrium Imposing the condition that the density be independent of

physics, but can be derived from the master equation dethe (arbitrary) normalization pointc, and using dimensional
scribing the microscopic behavior of the system, using theanalysis, a renormalization group equation can be written as
procedure developed by D¢17,18 and Peliti[19]. Their
procedure produces an effective field theory describing the
behavior of the system, with an action given by

S=f ddx
Nr(Dat,Ng,gr, %)

- no&m)}. (6) =(k"Dat) YNk 7, (kDat) Y7, gg, k),
(12

d d d
UDAt(?(D—At) +ﬁ(gR)@ - no(y—no +d{ng=0. (11

The solution to this, by the method of characteristics, is

f tdt{?ﬁ(at— DAV?) + 2N pp?+\ 292}
0

The field ¢ is a response field, which plays the sarle ras - . ] )

that in the Martin-Siggia-Rose approa¢B0]. This field ~Wheregg is the running coupling, which goes @ ast

theory can then be used to derive a Langevin equation by>*. In a diagrammatic expansion, each loop brings in a

integrating out the response field, applying the Martin-higher power of the renormalized coupling, so an expansion

Siggia-Rose approadi20] in reverse. For examples of this in the number of loops is an expansiongg, which is small

derivation applied to similar problems, see R¢&21]. Ei- near the critical dimensiod.= ¢. The first approximation to

ther the field theory or the Langevin equation can be used tthe right hand side can be found by summing all tree dia-

develop a renormalized perturbation expansion for the dergrams generated by expanding either the adtimn (6)] or

sity of particles. the Langevin equatiofEg. (3)]. The next term, including all
The sum of tree diagrams is equivalent to the solution ofdiagrams with loops, is calculated by writing an integral

Eg. (3) without the noise term. Divergences appear wherequation for the density, as done in Rg9]. The leading

diagrams with loops are included, and these can be handlegbntribution to the density at long times is then given by

by renormalizing the annihilation rate. Power counting 4

shows that the critical dimension &= o, so that the ex- n(t)=A(Dat) 7. (13

pansion will be ine= o —d. The diagrams in Fig. 1 give the h . d he orderedf th litud
full renormalization of the annihilation rate and represent theT e exponent Is exact and, to the orderetf the amplitude

sum IS
dk,  dk, F(E) )
AR(k,t)=>\—2>\2f - ———(2m)*8(k—k;—kp) 1 o) 2t79 o 5
(2m)9 (2m) A=(47T)d,2 e (14)
xe Kite Kty ... 7) F(E)
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FIG. 2. The density of particles divided by its asymptdtarge FIG. 3. The amplitude of the power-law decay of the density of

time) power law for several values @f. For o close to 1 and . . o P .
—1 (open symbols the crossover becomes very slow, but the trendpamdes determined in simulatioftircles, compared with the
' renormalization group prediction of Eql14). Also shown is the

is towards the same value as for simulations done with a Iarge(raxact resul{10] for the normal diffusion caséross
value ofD, . The filled symbols give the density far,=3.5. Also '
shown (solid line) is the crossover function of Eq15) for o

=1.1, with the parameters extrapolated to theire values. after a single step and makes it easier to determine the

anomalous diffusion constait, .

) o ) . ) For some values ofr, the anomalous diffusion constant
T.hIS expression is obtained b)_/ expanding factors which argy, in the distribution of hop lengths, ER), was varied. In
singular ase—0 in € and leaving the remainder as an ex- the field theory or the Langevin equation, this change to the
pression ind. The result for the exponent is to be expected yinetics results in a change in the coefficients of powets of
as the decay exponent for annihilation reactions is generallyhich come from an expansion of the hop length distribu-
a=d/d. for annihilation with no single-particle processes tjon. These terms, many of which are irrelevant in the renor-
(see, for example, Ref9]). Here,d.= o, producing the de- malization group sense and are not written in the Langevin
cay given in Eq(13). _ _ _ _equation, can be seen to have a significant impact on the

Simulations of a microscopic model in one dimensioncrossover behavior, and it may be useful to vary these pa-
have been performed and the results compared to the prediggmeters in future simulations to examine the crossover.
tion of the renormalization group calculation. The density of aAs can be seen in Fig. 2, the time taken to reach the
particlgs converged to the predigted power law for all Va|Ue%symptotic form of the density depends stronglyDq. For
of o simulated, as can be seen in Fig. 2. o close to 1 and =1, the crossover is very long, but the

The simulations are of a one-dimensional lattice, whereympiitude can be extracted from a fit to the form
only one particle may occupy each site. This differs from the

renormalization group calculation, in which multiple occu- n(t)
pancy is allowed, but the annihilation rate flows to a fixed -7
point and thus the bare annihilation rate does not appear in (Dat) Yo
the final answer, so the results should be similar. At the be-

ginning of the simulation, the lattice contaihs=10" sites,  To obtain the long-time value of the amplitude, the fit was
with every site occupied. Whenever the number of particleslone over many ranges with differing starting times, and
fell below 1000, the system was doubled by appending aextrapolated ta— . For larger values ob 4, this fit is not
exact copy of the current configuration of particles. Whilenecessary, as the density reaches its asymptotic value
this does make the system momentarily periodic, the twauickly, and several decades of scaling can be seen in the
halves subsequently evolve differently. This allowed thedata.

simulation to continue to large times without large statistical The prediction for the amplitude is compared to simula-
fluctuations in the density. Fer=1.05, the final system size tion results in Fig. 3. The agreement between ¢hexpan-

was L=2%x10". The distribution of jumps was chosen to sion for the amplitude and the simulation result becomes
follow a Levy stable law, using the method given in Ref. quite good for smalk, as expected for this asymptotic power
[22]. Since this method is for a continuous distribution, series expansion. As well as being interesting as a model for
which is then made into a discrete distribution by rounding,physical processes with anomalous diffusion, thevylLe
the values generated were multiplied by a numerically deterflights used here allow this regime, where the expansion pa-
mined factor to produce the correct Idwvalue of the dis- rameter is small, to be explored in a simulation.

tribution. Earlier simulation$21,16 used a pure power-law Thanks to Michael Plischke for several useful sugges-
form for the distribution of jumps, which does flow to the tions, and to Martin Howard and Tibor Antal for helpful
desired distribution in the long-time limit. The distribution comments on an earlier version of this paper. Financial sup-
used here matches thé edistribution much more closely port was provided by the NSERC of Canada.

=A(1-Bt %). (15)
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