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Long range hops and the pair annihilation reactionA¿A\0:
Renormalization group and simulation
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A simple example of a nonequilibrium system for which fluctuations are important is a system of particles
which diffuse and may annihilate in pairs on contact. The renormalization group can be used to calculate the
time dependence of the density of particles, and provides both an exact value for the exponent governing the
decay of particles and ane expansion for the amplitude of this power law. When the diffusion is anomalous,
as when the particles perform Le´vy flights, the critical dimension depends continuously on the control param-
eter for the Le´vy distribution. Thee expansion can then become an expansion in a small parameter. We present
the renormalization group calculation and compare these results with those of a simulation.
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Many different approaches have been used to study
dynamics of systems far from equilibrium@1–3#. These in-
clude exact solutions derived by mapping the problem t
quantum spin system@4# or by studying various particle dis
tribution functions@5,1#, renormalization group methods@6#,
and simulations. Many of these systems can be assigned
small number of universality classes, based on the time
pendence of a few measurable quantities. Renormaliza
group methods are particularly useful in characterizing t
universal behavior, as they make it possible to examine
action describing the behavior of the system and determ
which scaling variables are relevant. Systems of partic
which can diffuse and undergo reactions are straightforw
examples, which can be studied far from equilibrium. One
the simplest examples of a reaction-diffusion system is
pair-annihilation reaction, in which members of a single s
cies of particle, denoted byA, react at some ratel to form an
inert product. This reaction is writtenA1A→0. This reac-
tion and some related ones have been studied for some
For some examples, see the work of Smoluchowski@7#, who
studied the coagulation of colloidal particles using a me
field approach, and Ovchinnikov and Zeldovich@8#, who ex-
amined the effects of fluctuations on the reactionA1B
→0. The solution to the~mean-field! rate equation

]n

]t
5D¹2n2ln2 ~1!

for the density of particles is the correct result for spa
dimensiond.2, but for lower dimensions fluctuations be
come important. If the number density of particles scales
n;At2a for large t, thena51 for d.2. A renormalization
group study by Lee@9# produced the exact resulta5d/2 for
d,2, and also yielded the amplitudeA as an expansion in
e522d. The agreement between this amplitude and the
act result@10# for a specific model ind51 was poor, as
might be expected, as the expansion parametere51 is large
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here. However, thee expansion does provide a systema
picture of the scaling behavior of this process.

This paper extends the renormalization group calculat
of Ref. @9# to the case of anomalous diffusion, which is mo
eled by a long range hopping process in which the distan
particle travels in each time step is chosen from a Le´vy dis-
tribution. These distributions form a family that share wi
the Gaussian the property that they are ‘‘stable,’’ in the se
that the probability distribution of the sum of two numbe
chosen from a Le´vy distribution is the same distribution, u
to a trivial rescaling. The probability distribution for each
these distributions has a Fourier transform

P~k!5e2DAks
~0,s<2!, ~2!

wheres is a parameter that controls the shape of the dis
bution andDA scales the distribution. Fors,2, the real-
space distributions have power-law tails,P(r );r 2(d1s) for
large r. These distributions appear in a number of physi
contexts@11#, including diffusion in disordered media@12#
and motion of particles in turbulent flow, in both experimen
@13,14# and theoretical calculations@15#. Hinrichsen and
Howard @16# previously simulated the process studied he
and determined the exponenta, but did not perform a renor-
malization group calculation and did not measure the am
tude.

The calculation of the density of particles uses reasona
standard renormalization group techniques, and will only
summarized here. The density of particles can be found
solving the Langevin equation

]f~x,t !

]t
5~DN¹21DA“

s!f~x,t !2lf2~x,t !

1f~x,t !z~x,t ! ~3!

with an initial condition set by the initial density of particle
n0. The anomalous diffusion termDA¹s is defined by its
action in Fourier space,

DA“
seik•x52DAukuseik•x, ~4!

and the noise termz has correlations of the form
©2003 The American Physical Society03-1
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^z~x,t !z~x8,t8!&522ldd~x2x8!d~ t2t8!. ~5!

The average density is then given by an average of solut
to Eq.~3! over noise histories,n5^f&. The normal diffusion
term DN¹2 appears if the distribution of hops has any co
ponent proportional tok2 in its Fourier transform. This term
will be dropped, as it is less relevant than the anomal
term and flows to zero under renormalization.

The form of the noise term and the noise-noise correla
function given by Eq.~5! are not determined by equilibrium
physics, but can be derived from the master equation
scribing the microscopic behavior of the system, using
procedure developed by Doi@17,18# and Peliti @19#. Their
procedure produces an effective field theory describing
behavior of the system, with an action given by

S5E ddxF E
0

t

dt$f̂~] t2DA“
s!f12lf̂f21lf̂2f2%

2n0f̂~0!G . ~6!

The fieldf̂ is a response field, which plays the same roˆle as
that in the Martin-Siggia-Rose approach@20#. This field
theory can then be used to derive a Langevin equation
integrating out the response field, applying the Mart
Siggia-Rose approach@20# in reverse. For examples of thi
derivation applied to similar problems, see Refs.@6,21#. Ei-
ther the field theory or the Langevin equation can be use
develop a renormalized perturbation expansion for the d
sity of particles.

The sum of tree diagrams is equivalent to the solution
Eq. ~3! without the noise term. Divergences appear wh
diagrams with loops are included, and these can be han
by renormalizing the annihilation ratel. Power counting
shows that the critical dimension isdc5s, so that the ex-
pansion will be ine5s2d. The diagrams in Fig. 1 give th
full renormalization of the annihilation rate and represent
sum

lR~k,t !5l22l2E dk1

~2p!d

dk2

~2p!d
~2p!dd~k2k12k2!

3e2k1
ste2k2

st1•••. ~7!

FIG. 1. The diagrams contributing to the renormalized annih
tion rate. Time flows from right to left.
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This sum can be done to all orders after a Laplace tra
formationlR(k,s)5*0

`dte2stlR(k,t) to give

lR~k50,s!5
l

11lCs2e/s GS e

s D , ~8!

with

C5
1

s

222d/s

~4p!d/2

GS d

s D
GS d

2D , ~9!

and so, after a renormalization points5ks is chosen, the
exact flow function for the renormalized annihilation ra
gR5k2elR(0,k) is

b5k
]gR

]k
52 egR1eCGS e

s DgR
2 . ~10!

This has a nontrivial fixed point, which is stable ford,s, at
gR* 5@CG(e/s)#21.

Imposing the condition that the density be independen
the ~arbitrary! normalization pointk, and using dimensiona
analysis, a renormalization group equation can be written

FsDAt
]

]~DAt !
1b~gR!

]

]gR
2n0

]

]n0
1dGnR50. ~11!

The solution to this, by the method of characteristics, is

nR~DAt,n0 ,gR ,k!

5~ksDAt !2d/snR„k
2s,~ksDAt !d/s,g̃R ,k…,

~12!

where g̃R is the running coupling, which goes togR* as t
→`. In a diagrammatic expansion, each loop brings in
higher power of the renormalized coupling, so an expans
in the number of loops is an expansion ingR* , which is small
near the critical dimensiondc5s. The first approximation to
the right hand side can be found by summing all tree d
grams generated by expanding either the action@Eq. ~6!# or
the Langevin equation@Eq. ~3!#. The next term, including all
diagrams with loops, is calculated by writing an integr
equation for the density, as done in Ref.@9#. The leading
contribution to the density at long times is then given by

n~ t !5A~DAt !2d/s. ~13!

The exponent is exact and, to the order ofe0, the amplitude
is

A5
1

~4p!d/2

GS d

s D
GS d

2D
212d/s

s Fse 2
5

2G . ~14!
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This expression is obtained by expanding factors which
singular ase→0 in e and leaving the remainder as an e
pression ind. The result for the exponent is to be expecte
as the decay exponent for annihilation reactions is gener
a5d/dc for annihilation with no single-particle process
~see, for example, Ref.@9#!. Here,dc5s, producing the de-
cay given in Eq.~13!.

Simulations of a microscopic model in one dimensi
have been performed and the results compared to the pr
tion of the renormalization group calculation. The density
particles converged to the predicted power law for all valu
of s simulated, as can be seen in Fig. 2.

The simulations are of a one-dimensional lattice, wh
only one particle may occupy each site. This differs from
renormalization group calculation, in which multiple occ
pancy is allowed, but the annihilation rate flows to a fix
point and thus the bare annihilation rate does not appea
the final answer, so the results should be similar. At the
ginning of the simulation, the lattice containsL5107 sites,
with every site occupied. Whenever the number of partic
fell below 1000, the system was doubled by appending
exact copy of the current configuration of particles. Wh
this does make the system momentarily periodic, the
halves subsequently evolve differently. This allowed t
simulation to continue to large times without large statisti
fluctuations in the density. Fors51.05, the final system siz
was L5293107. The distribution of jumps was chosen
follow a Lévy stable law, using the method given in Re
@22#. Since this method is for a continuous distributio
which is then made into a discrete distribution by roundin
the values generated were multiplied by a numerically de
mined factor to produce the correct low-k value of the dis-
tribution. Earlier simulations@21,16# used a pure power-law
form for the distribution of jumps, which does flow to th
desired distribution in the long-time limit. The distributio
used here matches the Le´vy distribution much more closely

FIG. 2. The density of particles divided by its asymptotic~large
time! power law for several values ofs. For s close to 1 andDA

51 ~open symbols!, the crossover becomes very slow, but the tre
is towards the same value as for simulations done with a la
value ofDA . The filled symbols give the density forDA53.5. Also
shown ~solid line! is the crossover function of Eq.~15! for s
51.1, with the parameters extrapolated to theirt→` values.
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after a single step and makes it easier to determine
anomalous diffusion constantDA .

For some values ofs, the anomalous diffusion constan
DA in the distribution of hop lengths, Eq.~2!, was varied. In
the field theory or the Langevin equation, this change to
kinetics results in a change in the coefficients of powers ok,
which come from an expansion of the hop length distrib
tion. These terms, many of which are irrelevant in the ren
malization group sense and are not written in the Lange
equation, can be seen to have a significant impact on
crossover behavior, and it may be useful to vary these
rameters in future simulations to examine the crossover.

As can be seen in Fig. 2, the time taken to reach
asymptotic form of the density depends strongly onDA . For
s close to 1 andDA51, the crossover is very long, but th
amplitude can be extracted from a fit to the form

n~ t !

~DAt !21/s
5A~12Bt2f!. ~15!

To obtain the long-time value of the amplitude, the fit w
done over many ranges with differing starting times, a
extrapolated tot→`. For larger values ofDA , this fit is not
necessary, as the density reaches its asymptotic v
quickly, and several decades of scaling can be seen in
data.

The prediction for the amplitude is compared to simu
tion results in Fig. 3. The agreement between thee expan-
sion for the amplitude and the simulation result becom
quite good for smalle, as expected for this asymptotic pow
series expansion. As well as being interesting as a mode
physical processes with anomalous diffusion, the Le´vy
flights used here allow this regime, where the expansion
rameter is small, to be explored in a simulation.

Thanks to Michael Plischke for several useful sugg
tions, and to Martin Howard and Tibor Antal for helpfu
comments on an earlier version of this paper. Financial s
port was provided by the NSERC of Canada.
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FIG. 3. The amplitude of the power-law decay of the density
particles determined in simulation~circles!, compared with the
renormalization group prediction of Eq.~14!. Also shown is the
exact result@10# for the normal diffusion case~cross!.
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